MOSSES AND THEIR DISTRIBUTION IN THE AUSTRALIAN CAPITAL TERRITORY

Helen P. Ramsay \& H. Streimann²
(Accepted for publication 29.3.1983)

Abstract

Ramsay, IIclen P. 1 \& Strcimann. II. ${ }^{2}$ ('School of Botany, University of New South Wales, Kensington, N.S.1: Anstralia 2033: :Herbarium, National Botanic Gardens, Canberra A.C.T. Australia 2601). Telopea 2(5): 559-574. - The Ausiralian Capital Tertitory is geographieally loeated on the Southern Tablelands of New South Wales. The area is physiographically and elimatically diverse with alluvial terrain to high ridges reaching 1900 m . More than 180 species from 39 families and their distribution within the A.C.T. are recorded. Data on distribution in other regions of N.S.W. and in other Australian states are also given. Affinities are mainly with temperate mosses of southern Australia.

INTRODUCTION

The Australian Capital Territory (A.C.T.), although a diserete political territory, is geographically located on the Southern Tablelands of New South Wales. In area it covers 2357 sq . km with more than half being occupied by rugged mountainous catchment areas (Learmonth 1973). Canberra, the capital city of Australia, lies on a plain 600 m above sea level and approximately 100 km from the coast on the western side of the Great Dividing Range in the A.C.T.

The physiography of the A.C.T. can be divided into: (i) high ridges and steep hillslopes; (ii) rolling terrain; (iii) gently undulating terrain; (iv) alluvial terrain. The Murrumbidgee River and its tributaries, the Molonglo and Cotter rivers, pass through the Territory. The Murrumbidgee and Molonglo drain from the Grcat Dividing Range, while the Cotter originates in the ranges west of Canberra. On the western boundary are the Brindabella-Bimberi Ranges that connect with the Snowy massif. The Scabby-Boboyan Ranges form the southern boundary. A number of peaks within these ranges reach 1800 m with Bimberi Peak 1903 m in the south the highest. They form a dissected plateau, part of the Kosciusko peneplain, cut across by folded and steeply dipping Ordovician and Silurian slates, sehists, slaty shales and grit, Silurian volcanics, with some Palaeozoic porphyry, granite, and Devonian igneous rocks. Alluvial flats form the Canberra basin, a rain-shadow area often having less than 600 mm rainfall (Learmonth 1973).

Great variations in climate occur between the Canberra plain and the higher peaks on the western ranges. There are numerous rain-shadows in the deeper valleys, but the main rain-shadow is the Canberra plain itself. It is dry during the summer, most of the rainfall being derived from a few downpours, but high evaporation rates, about 1600 mm annually, reduce its effectiveness. On the ranges the precipitation may reach 1500 mm per year, and is more uniform. In winter, inversions cause fogs and some of the grasslands in the higher valleys may have evolved from the settling of cold air. In addition, Canberra gets about 100 days of frost per annum, with a large range of diurnal temperatures in both winter and summer. Less is known of the climate at higher altitudes but data in Table 1 (see page 563) illustrate some of the variation at different altitudes.

Snow occurs on the ranges above 1220 m and on the higher parts (above 1500 m), where it may lie for 3 to 4 months. Soils tend to correlate to topography, geology and the climatic influences over long periods.

DISTRIBUTION WITHIN THE A.C.T.

Vegetation in the A.C.T. has affinities with elements from Mt Kosciusko, the Victorian Alps and Tasmania. The zonations of the A.C.T. vascular flora are mostly altitudinal. Little has yet been done on the altitudinal distribution or the ecology of the non-vascular flora exeept on Mt Ainslie and Blaek Mountain. Mueh of the vegetation has been greatly modified by man since European settlement (Pryor 1954).

Natural features or major roads have been used to define five topographically separate divisions of the A.C.T. for this project (see Fig. 1). The Brindabella Ranges division encompasses almost all the topographical environments found in the A.C.T. The following are short deseriptions of each division. (Jervis Bay is excluded as it is geographically in a separate part of New South Wales and unrelated floristically to the rest of the A.C.T.)

Division 1. BOOTH RANGE (east side of Gudgen by Road)
Three vegetation types predominate here. At higher altitudcs ($>700 \mathrm{~m}$) Eiucalyptus delegatensis - E. dalrympleana form wet sclerophyll forest. In the broad upper valley systems E. pauciflora - E. stellulata savannah woodlands are present, while in the northern area between the Booth and Clear Ranges E. melliodora - E. blakelyi woodlands oceur (Burbidge \& Gray 1970). There has been very little disturbance to the area except for grazing in the north. Most of the area is in the Namadgi National Park.

The altitude ranges from 640 m to 1600 m (Mt Clear) with foliated granodiorite as the predominant rock.

Division 2. SOUTHERN RANGES (south of Orroral and west of Gudgenby road) The vegetation comprises mostly Eucalyptus delegatensis - E. dalrmpleana wet sclerophyll forest with seattered poekets of E. pauciflora - E. stellulata savannah woodlands along the larger stream valleys. The higher ranges have alpine woodlands of stunted E. pauciflora and grasses (Burbidge \& Gray 1970). Small areas of Sphagnum swamp are seattered throughout this region. Least disturbance has taken plaee in this division. The Namadgi National Park includes a large area here as well as Division 1.

The main rocks are foliated granodiorites that form large speetacular outcrops. Along the Cotter Valley, from near the confluence of the Orroral and Gudgenby rivers to the southern border, sandstone and greywaeke are found. The altitude ranges from 840 m to 1903 m (Bimberi Peak, the highest peak in the A.C.T.).

Division 3. BRINDABELLA RANGES (north of the Orroral-Cotter Hut roads)

 The vegetation in this division varies greatly from tree-fern-shaded, humid gullies at the Tidbinbilla Nature Reserve to alpine woodlands of Eucalyptus pauciflora on the higher parts of the ranges adjacent to the N.S.W. border. The undulating lowlands along the Murrumbidgee and Paddys rivers earries E. melliodora E. blakelyi savannah woodland with Casuarina cumminghamii along the banks. However, mueh of this is now grazing land or Pimus radiata plantations. Eucalyptus macrorhyncha - E. rossii dry selerophyll forest oceurs on northerly and westerly faces of the mountains. Also a seetion of E. fastigata - E. viminalis wet selerophyll forest oecurs along the Cotter Valley with a seattered dense understorey of Compositae, Myrtaceae and Rhamnaceae (Burbidge \& Gray 1970). Extensive, scattered Sphagnum swamps oceur at high altitudes on tributaries of the Cotter River. Within the area, moist gullies with tree-ferns and numerous "eoastal" moss species, e.g. Camptochacte and Hypnodendron, are present.Most of this area, ineluding Mt Gingera, is foliated granodiorite, although a section of greywaeke, slate and sandstone oceurs at Mts Aggie, Franklin and Ginini. Mt Coree is eovered by voleanie rocks and part of the Tidbinbilla Range is

Fig. 1. Australian Capital Territory showing division into areas defined for this study.
quartzite. Volcanic rocks cover extensive areas in the north. The altitude varies between 410 and 1856 m (Mt Gingera).
Division 4. CANBERRA PLAIN (bounded on south-east by Sutton Road and west by the Murrumbidgee River)
This plain has several outeropping mountains - Black Mountain, Mts Majura and Ainslie, and Red Hill. The area is predominantly a mixture of acid voleanic rocks and porphyry. The altitude varies between 410 and 890 m (Mt Majura). The plain is drained by the Molonglo and Murrumbidgec rivers while most of the smaller streams are scasonal.

Much disturbance has been caused by grazing and urbanization. As a result, a large proportion of the original Themeda-Poa grasslands of the river flats and the Eucalyptus melliodora - E. blakelyi savannah woodlands now occur only in small pockets. There are small sections of E. rossii - E. macrorhyncha, with the most extensive being around Black Mountain.
Division 5. KOWEN FOREST (east of Sutton Road)
Eucalyptus rossii - E. macrorhyncha dry sclerophyll forest predominates and savannah woodlands occur along the northern boundary of the A.C.T. Extensive Pinus radiata plantations oceur in this division.

Folded sedimentary rocks (greywacke, slate and sandstone) form the underlying strata that generally developed shallow, gravelly soils. Most of the area is hilly or rolling country with a steep section along a fault line near the Sutton Road. Further steep sections are encountered along the Molonglo River. This is now a nature reserve and a popular recreation area. The altitude varies between 610 and 920 m .

COMPILATION OF DATA

The following data, presented in Table 2, have been compiled from field work and herbarium specimens held in the Herbarium Australiense (CANB), and the Herbarium, National Botanic Gardens (CBG) in Canberra; the National Herbarium of New South Wales (NSW), the Herbarium, University of New South Wales (UNSW), the Ray Herbarium, University of Sydney (SYD) and the private collection of Professor D.G. Catcheside.

Names follow those in use according to Index Muscorum plus supplements (Wijk et al. 1959-1969; Crosby 1977, 1979; Crosby \& Bauer 1981) together with information from Scott \& Stone (1976), Catcheside (1980) and other taxonomic publications. For synonyms, nomina nuda and further information sec Census of New South Wales mosses (Ramsay 1984). Families are arranged according to Crosby \& Magill (1981), with genera and species listed alphabetically in families.

KEY TO SYMBOLS USED			
LHI	FOR DISTRIBUTION		
C	Cord Howe Island	FWP	Far Western Plains
T	Tablelands	N	North
WS	Western Slopes	C	Central
WP	Western Plains	NSW	South
			New South Wales

- >3 collections in the subdivision

O no sighted or cited specimen from the subdivision
? specimen or cited locality inadequate for reliable record
number of specimens $\leqslant 3$
Q - Queensland, $\mathbf{V}-\mathrm{V}$ Victoria, T - Tasmania, $\mathrm{Y}-$ Northern Territory,
S - South Australia, $\mathbf{W}-$ Western Australia
TABLE 1. CLIMATIC DATA FOR CANBERRA AND BULLS HEAD.

Location	$\begin{aligned} & \text { Alt } \\ & (\mathrm{m}) \end{aligned}$	Temperature (${ }^{\circ} \mathrm{C}$)						Rain Evap ${ }^{n}$ Av. annual (mm)	
		Jan.		July		Extremes			
		Av. max.	Av. min.	Av. max.	Av. min.	Max.	Min.		
Canberra	600	27.5	13.0	11.1	-0.4	42.2	-10.0	633	1600
Bulls Head*	1320	21.3	9.7	5.2	-2.0	35.1	-12.2	1009	-

*Junction Brindabella and Bendora Dam roads.
TABLE 2. MOSSES AND THEIR DISTRIBUTION IN THE A.C.T.
(familics arranged according to Crosby \& Magill 1981)

here
Retained here as
$\ddagger=$ Didymodon in Catcheside (1981).

$\begin{aligned} & 5555 \\ & 050 \\ & \hline \end{aligned}$	5	5	\gg	335	$\frac{3}{3} 5>55$	$\begin{aligned} & 3 \\ & 35 \\ & 50 \end{aligned}$	$\begin{aligned} & 3 \\ & 5 \\ & 5 \\ & 0 \end{aligned}$	$\stackrel{5}{\circ}$	\gg
	$\begin{aligned} & \frac{n}{2} \\ & i \\ & \vdots \\ & u \end{aligned}$	$\begin{aligned} & E \\ & \underset{Z}{n} \end{aligned}$	$\begin{aligned} & \text { 六京 } \\ & \text { に年 } \end{aligned}$	$\begin{aligned} & \sum_{i n}^{n} \\ & 6 z z \\ & n=\forall \\ & z U U \end{aligned}$				$\begin{aligned} & u \\ & \circlearrowright \\ & \underset{Z}{\Xi} \\ & \underset{\exists}{\Xi} \end{aligned}$	
00000	0	0	00	$0 \cdot 0$	－ 0000	＊＊	－	0	00
00000	－	＊	00	－ 0	－$* 000$	－＊	－	\bigcirc	00
－ 0 －＊＊	－	＊	－－	O＊＊	－＊ 0 ＊	－－	－	\bigcirc	＊

$0 * * 0$	0	－	0	＊ 0	$0 * 0$	＊＊ 00000	＊	－	\bigcirc
	R. novae-hollandiae (Brid.) Brid.						合		
ल		ल	m	mi	$\dot{\sim}$		$\dot{\nabla}$	＋i	

Name

$5 \frac{5}{2}$	5	$n_{5}^{2} 5$	$\frac{5}{5}$	$\frac{3}{2}$	0	5	$\frac{3}{5}$	$\frac{3}{3}$	$\begin{aligned} & 3 \\ & 55 \\ & 25 \end{aligned}$		5
$\begin{aligned} & E \\ & \text { E } \end{aligned}$	E	$\begin{aligned} & \sin \\ & i n v i \end{aligned}$	気			$\stackrel{n}{3}$	$\begin{aligned} & \frac{\lambda}{\bar{j}} \\ & \stackrel{y}{i} \end{aligned}$				$\frac{2}{5}$ $\frac{6}{6}$

6
LEMBOPHYLLACEAE
Lembophyllum divulsum（Hook．f．\＆
Wils．）Lindb．．．．．．．．
65．HOOKERIACEAE
Wils．）Vitt \＆Crosby ．．．．．．．．．．．．．．．．．
Distichophyllum microcarpum（Hed．

Sauloma tenella（Hook．f．\＆Wils．）Mitt．
$\left.\begin{array}{l}\text { 68．} \begin{array}{c}\text { HYPOPTERYGIACEAE } \\ \text { Hypopterygium rotulatum（Hedw．）} \\ \text { Brid．}\end{array} \quad \cdots \cdots \cdots\end{array}\right)$
F．brachyphylla C．Muell．
Pseudoleskea imbricata（Hook．f．\＆
Wils．）Broth．．．．．．．．．．．．．
72．THUIDIACEAE
Anomodon tasmanicus Broth．
Thuidium furfurosum（Hook．\＆\＆Wils．）
Reichdt．．．．．．．．．．．．．．．
T．furfurosum（Hook．f．\＆Wils．）
T．laeviusculum（Mitt．）Jaeg．
73．AMBLYSTEGIACEAL

SUMMARY OF DATA

A total of 180 species are recorded from 39 families. There are no type specimens for which the collection site is listed in the A.C.T. Species that have been attributed to the A.C.T. in Scott \& Stone (1976), but for which no specimens have been located, have not been included here.

Species diversity within the five areas deseribed varies greatly. Kowen Forest (Division 5) contains only 34 of the listed species. This area is the smallest with less variation in habitat and has been affected by cultivation, e.g. Pinus radiata forests. The Brindabella Ranges (Division 3) have a great range in altitude and habitat from river flats to alpine regions and also have the greatest diversity - 137 species. Although the Canberra Plain (Division 4) is most influeneed by settlement, with the City of Canberra and grazing properties covering extensive areas, the moss flora is as diverse (89 species) as in the Southern Ranges (Division 2) (83 species) where there are greater differences in altitude and vegetation and little disturbance has oceurred. This lat ter area is perhaps undercollected at present. The Booth Range (Division 1), which also has had little disturbance by settlement or grazing, has a surprisingly low species number (55 species). Again the area may be undercollected at present.

The relationships and distribution of mosses in the A.C.T. are primarily with temperate species in southern Australia, mainly Vietoria and Tasmania. Of the species represented, only 69 oceur also in Queensland and most of these are species that have a wider extra-Australian range. There are 35 taxa that have been collected only in the Southern Tablelands of New South Wales although all but two, Thuidium subglaucinum and Brachythecium plumosum, oceur elsewhere in Australia.

ACKNOWLEDGEMENTS

Preparation of these data has depended on much help from a number of people to whom we are most grateful. Dr W.A. Weber allowed use of his unpublished preliminary list of the mosses of the A.C.T. The Directors and staff of the various herbaria have been most co-operative in allowing access to collections. Drs H. Ochi, G.A.M. Scott, I.G. Stone and A. Touw have helped in cheeking determinations of many species. Professor D.G. Catcheside has provided information on a number of species, including some new records. Professors D.J. Anderson and D.G. Catcheside have assisted with suggestions for improvements to the manuseript. We are indebted to K. Cowan, Australian National University, for preparation of the map in Figure 1.

REFERENCES*

Gunn, R.H., Storey, R., Galloway, R.W., Duffy, P.J.B., Yapp, G.A. \& MeAlpine, J.R. (1969). 'Lands of the Queanbeyan - Shoalhaven Area, A.C.T. \& N.S.W.' CSIRO: Land Research Series No. 24. (Melbourne.)

Learmonth, A. \& N. (1973). 'Eneyclopedia of Australia.' (Frederick Warner \& Co: London.) Edn 2.
Pryor, L.D. (1954.) Plant communities. In White, H.L. (ed.), 'Canberra - A Nation's Capital.' (Angus \& Robertson: Sydney.) pp. 153-161.
Strusz, D.L. (1971). 1: 250,000 Geological Series - Explanatory Notes.
CANBERRA, Australian Capital Territory \& New South Wales.
(Bureau Mineral Resources: Canberra.)

[^0]
[^0]: *For a full reference list see Ramsay, H.P. (1984), Census of New South Wales mosses, Telopea (2)5:
 455-533.

